skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shemtaga, Hewan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Chemotaxis phenomena govern the directed movement of microorganisms in response to chemical stimuli. In this paper, we investigate two Keller–Segel systems of reaction–advection–diffusion equations modeling chemotaxis on thin networks. The distinction between two systems is driven by the rate of diffusion of the chemo-attractant. The intermediate rate of diffusion is modeled by a coupled pair of parabolic equations, while the rapid rate is described by a parabolic equation coupled with an elliptic one. Assuming the polynomial rate of growth of the chemotaxis sensitivity coefficient, we prove local well-posedness of both systems on compact metric graphs, and, in particular, prove existence of unique classical solutions. This is achieved by constructing sufficiently regular mild solutions via analytic semigroup methods and combinatorial description of the heat kernel on metric graphs. The regularity of mild solutions is shown by applying abstract semigroup results to semi-linear parabolic equations on compact graphs. In addition, for logistic-type Keller–Segel systems we prove global well-posedness and, in some special cases, global uniform boundedness of solutions. 
    more » « less
  2. This paper concerns asymptotic stability, instability, and bifurcation of constant steady state solutions of the parabolic-parabolic and parabolic-elliptic chemotaxis models on metric graphs. We determine a threshold value $$\chi^*>0$$ of the chemotaxis sensitivity parameter that separates the regimes of local asymptotic stability and instability, and, in addition, determine the parameter intervals that facilitate global asymptotic convergence of solutions with positive initial data to constant steady states. Moreover, we provide a sequence of bifurcation points for the chemotaxis sensitivity parameter that yields non-constant steady state solutions. In particular, we show that the first bifurcation point coincides with threshold value $$\chi^*$$ for a generic compact metric graph. Finally, we supply numerical computation of bifurcation points for several graphs. 
    more » « less
    Free, publicly-accessible full text available November 5, 2025